Nano thermometer detects temperature inside a single cell

A nanothermometer capable of measuring the temperature inside cells was developed by a group of researchers at Rice University.

The related study, published in the Journal of Physical Chemistry B, describes how researchers Angel Martí and Meredith Ogle modified a biocompatible molecular rotor known as boron dipyrrometene (BODIPY, for short) to build what can be considered as a “nanothermometer” In order to detect the temperature level inside a single cell with good precision.

Temperature detection occurs through the fluorescence of the “nanothermometer” whose duration depends precisely on the variations in temperature. Fluorescence, in fact, depends on the excitation of the molecule used as a thermometer and the excitation, in turn, depends on how much the molecule itself wobbles, that is it goes back and forth like the clock pendulum.

Detection takes place through the observation of boron dipyrrometene through an imaging microscope.

One of the uses that such a thermometer could have is related to the identification of cancer cells, as Martí himself specifies: “We would like to know if we can identify cancer cells from the heat they produce and differentiate them from normal cells.”